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Abstract—We have developed a W-band (75-110 GHz) wave-
guide photomixer with a uni-traveling carrier photodiode, which
can bedriven by two 1.5-1m lasers. It generates an output power
of 2.2+0.2mW at 100 GHz with alaser power of lessthan 100 mW,
and itsrelative power variation isassmall as3 dB acrosstheentire
frequency range of the W-band. A 100-GHz superconductor—in-
sulator—superconductor receiver driven by this photomixer shows
the same noise temperature around 26 K asthat driven by a con-
ventional Gunn oscillator.

Index Terms—Local oscillator (LO), millimeter wave,
photomixer, radio astronomy, sub-millimeter wave, uni-traveling
carrier photodiode.

I. INTRODUCTION

ILLIMETER-WAVE and sub-millimeter-wave sources
with large output power, high purity of frequency, high
stability, and large frequency tunability have many applications
in radio astronomy, spectroscopy, information transmission,
light computerized tomography, etc. These sources are espe-
cialy essential for coherent receivers asalocal oscillator (LO).
The large radio telescope Atacama large millimeter/sub-mil-
limeter array (ALMA) is planned to achieve a large collecting
area and high resolution. The ALMA will be constructed at
the desert of Atacama, Chile. The observation frequency range
is from 30 to 950 GHz. Designed baseline length of the radio
interferometer is approximately 14 km. The loca source for
such a heterodyne detection of a radio-astronomical signal is
needed to have high purity of frequency, wide tuning range,
ultra-low noise, and transmission capahility for long distance.
Thus, we have to develop methods of LO signa transmission
and local signal generation.
Solid-state oscillators such as a Gunn oscillator have been
used for this purpose in millimeter wavel engths. However, they
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do not have a large tuning range of frequency (typicaly 10%),
and maximum radiation frequency is limited below 150 GHz
without a multiplier [1]. Apart from the Gunn oscillator,
a high electron-mobility transistor (HEMT) oscillator [2],
yttrium—ron—garnet (Y1G) oscillator/HEMT power amplifier
[3], and flux-flow oscillator [4] are developed in the millimeter
wavel ength range. In the sub-millimeter wavel ength, frequency
multipliers with millimeter-wave oscillators are aso used [5].
However, they are also limited in tuning range and output
power. For the millimeter and sub-millimeter wavelengths
range, the photomixer is a promising device because of the
widetuning range and small package. L ow-temperature-growth
(LTG) GaAs photomixers have been developed for terahertz
applications [6]9]. They have large tunability and high
purity of frequency [10]. Verghese et al. demonstrated that the
driving of a superconductor—insulator—superconductor (SIS)
mixer at 630 GHz with an LTG GaAs photomixer using a
Martin—Pupplett interferometer had comparable performance
of a Gunn oscillator case with a noise temperature of 331 K
[11]. However, these pioneering works are limited in terms of
the output power. In addition, an LTG GaAs requires light with
awavelength of 800 nm, which is not suitable for long-distance
transmission with a low transmission loss compared with that
of 1.55 pm.

Recently, an ultrafast InP/InGaAs photodiode caled a
uni-traveling-carrier photodiode (UTC-PD), which is sensitive
to the light covering a wavelength of 1.55 um, has been
developed [12]. Photogenerated holes in this photo diode do
not dominate the response speed due to the collective motion of
majority holesin the absorption layer, and only electronsplay as
active carriers. Therefore, it has a fast response compared with
a conventiona p-i-n photodiode. The InP/InGaAs UTC-PD,
which has a p-type photo-absorption layer and a wide-gap
electron-collection layer, has a higher saturation output while
maintaining afast response. Recently, Ito et al. reported a pulse
response for the InP/InGaAs UTC-PD of 0.97 ps [full width at
half maximum (FWHM)] [13], which corresponds to a 3-dB
down bandwidth of 310 GHz. The UTC-PD is driven by lasers
whose emission wavelength is 1.55 ym. The amplification
and a low-loss transmission of the 1.55-um signal is viable
so that the UTC-PD is a promising device for a millimeter
and submillimeter photomixer [14]. This paper reports on the
performance of a W-band waveguide photomixer using the
UTC-PD.
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Fig. 1. (&) Schematic drawing of the photomixer. The photomixer consists of two parts of an upper mount and a lower mount. The broken line shows a
separation surface of the photomixer. The waveguide size is a quarter height of the WR-10. The laser beam spot size on the UTC-PD is approximately 10 pm

in diameter. (b) Picture of the upper mount. The fused quartz substrate is 6-

mm long, 0.6-mm wide, and 0.15-mm thick. A simple cross-shaped antenna of

microstrip-to-waveguide transition is printed on the substrate. (c) Picture of the UTC-PD chip. Diameter of the UTC-PD is 8 yum. The UTC-PD chip is soldered

upside down on a fused-quartz substrate.

Il. WAVEGUIDE PHOTOMIXER

An InP/InGaAs UTC-PD is fabricated on an InP substrate
with dc and RF signal lines, and the chip is mounted upside
down on a fused quartz substrate. The substrate is then placed
across amicrostrip channel and a quarter-height W -band wave-
guide.

A simple cross-shaped microstrip waveguide transition
formed on the quartz substrate is designed to couple the output
power into the waveguide [15]. A return loss between the
microstrip channel and quarter-height waveguide is calculated
to be approximately —15 dB for the frequency range of
75-110 GHz with the High Frequency Structure Simulator
(HFSS) (Agilent Technologies, Palo Alto, CA). In designing
the RF circuit, the UTC-PD was modeled to have a current
source with a parallel capacitor (20-30 pF) and a series resis-
tance. An effective load resistance value for the UTC-PD was
chosen to be 25 2. The UTC-PD is coupled with a tapered
strip-line transition, which transforms an output impedance of
the UTC-PD to 50 2. Schematic drawing of the waveguide
mounted UTC-PD is shown in Fig. 1. The photodiode diameter
is 8 um. The UTC-PD is driven by the optical beating of the
combined output of two distributed feedback lasers whose
emission wavelengths are around 1.55 ;:m and the output power
is20 mW. The output power isamplified with an Er-doped fiber
amplifier to 100 mW. The laser linewidth is a few 100 kHz at
free running. A polarization controller is inserted in an optical
path in order to improve contrast of the interference. Output
of the fiber coupled semiconductor laser diodes are combined
to a single-mode fiber using a 3-dB coupler. The beam from
the single-made fiber through relay lenses of a self-focus and

plano-convex irradiates the UTC-PD. Estimated beam size on
the device is approximately 10 xm in diameter.

An example of the measured spectrum at 100 GHz from the
photomixer is shown in Fig. 2(a). The generated RF signal is
measured by use of a harmonic mixer HP11970W (Agilent
Technologies, Palo Alto, CA) and spectrum analyzer HP-8562
(Agilent Technologies, Palo Alto, CA). The spectrum has
approximately 50-dB signal to noise ratio at 1-MHz frequency
resolution. A fiber is aligned to the PD so that the photocurrent
is maximized using a three-axis stage. The allowance of this
setting is around a few micrometers. A relation of photocurrent
and output power isshownin Fig. 2(b). The output power isalso
measured by use of a calibrated Schottky diode. Calibration of
the Schottky diode (waveguide detector DX P-08-RPFWO, Mil-
litech, Northampton, MA) is performed using a backward-wave
oscillator and a power meter (PS-28-6A, Dorado, Seattle, WA).
The maximum output power is 2.2+0.2 mW at the frequency
of 99.8043 GHz. At this point, the photocurrent of the UTC-PD
was 20 mA and the bias voltage was —2 V. Output power
saturation is observed at a photocurrent of around 20 mA for a
bias voltage of —2 V. Detected output power may be slightly
higher than true output power because the Schottky diode is a
broad-band detector, but no spurious signal is observed around
the signal in Fig. 2(a). This output power is approximately ten
times larger as compared with other types of photomixers.

Measurements of output power are made over a wide fre-
guency rangefrom 75to 110 GHz (W -band). Thefrequency de-
pendence of the output power isshown in Fig. 3. Relative output
power variation of the photomixer as afunction of frequency is
lessthan 3 dB over the entire range of the W -band without any
mechanical tuning commonly used for the Gunn oscillator.
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Fig. 2. (a) Example of a measured 100-GHz signal from a photomixer.

During the experiments, the lasers are operated at free running. The spectrum
is obtained with a resolution bandwidth of 1 MHz. (b) The output power versus
photocurrent. Bias point of the UTC-PD is —2 V. The maximum output power
i52.24+0.2 mW.
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Fig. 3. Freguency characteristics of the photomixer. The relative output
power changeislessthan 3 dB acrossthe entire frequency range of the ¥ -band
waveguide.

Ill. PHOTOMIXER ASAN LO

An SIS mixer isdriven by the photomixer signal of 100 GHz.
The photomixer signal is fed to an SIS mixer by quasi-optical
coupling with a coupling efficiency of 5% and through a50-.:m
Mylar film. ThelFfrequency is4.5-7 GHz and the output power
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Fig. 4. Example of the current—voltage curve and IF output power for a hot
load (300 K) and cold load (77 K). The upper panel shows the result of the
photomixer pumping and the lower one shows a case of the Gunn oscillator
pumping. The IF output power was recorded under the condition that the
water vapor in the atmosphere was attached on an RF window during the
measurements. Ordinate for the |F output is not scaled.
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Fig. 5. Frequency dependence of Y -factors obtained with a photomixer and
Gunn oscillator.

is measured by a power meter. The maximum Y -factor, which
is the difference of the IF output power between the hot load
(300K) and cold load (77 K), iscloseto 5 dB at the lowest tem-
perature of the SIS mixer. This corresponds to the noise tem-
perature of 26 K in the double-sideband (DSB) condition. The
result is almost the same as that obtained by a Gunn oscillator.
We did not find out any significant differences of characteris-
tics between a Gunn oscillator and the photomixer in this ex-
periment. The excess noise generated by the photomixer is less
than 10 K. Therelationship between the frequency and Y -factor
is measured by a power meter. Systematical errors of the mea-
surements are approximately 0.2 dB.

Examples of the plotted current—voltage curve and IF output
power for the hot (300 K) and cold load (77 K) conditions are
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shown in Fig. 4. The upper panel shows the result of the pho-
tomixer pumping and the lower panel shows a case of the Gunn
oscillator pumping. On a steady state, the Gunn oscillator and
photomixer show Y factors of around 4.2 dB, such as shown in
Fig. 5. In this experiment, no significant difference is observed
between the Gunn oscillator and photomixer case.

IV. CONCLUSIONS

A waveguide photomixer at 100 GHz has been fabricated and
demonstrated using the UTC-PD. The photomixer is driven by
two lasers (A = 1.55 um) having dlightly different frequencies.
The maximum output power is2.2+0.2 mW at the frequency of
100 GHz. Thisoutput power isapproximately tentimeslarger as
compared with other types of photomixers. The frequency range
of the output signal covers the entire W-band (75-110 GHZz),
and relative variation of the output power is less than 3 dB.
These results suggest that the UTC-PD is very promising for
fabrication of a wide-band millimeter and sub-millimeter LO.
The photomixer and a Gunn oscillator have almost the same
characteristics in heterodyne mixing using SIS mixers with a
noise temperature of 26 K.
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